NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvab Unicode version

Theorem cbvab 2472
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1  F/
cbvab.2  F/
cbvab.3
Assertion
Ref Expression
cbvab

Proof of Theorem cbvab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5  F/
21nfsb 2109 . . . 4  F/
3 cbvab.1 . . . . . 6  F/
4 cbvab.3 . . . . . . . 8
54equcoms 1681 . . . . . . 7
65bicomd 192 . . . . . 6
73, 6sbie 2038 . . . . 5
8 sbequ 2060 . . . . 5
97, 8syl5bbr 250 . . . 4
102, 9sbie 2038 . . 3
11 df-clab 2340 . . 3
12 df-clab 2340 . . 3
1310, 11, 123bitr4i 268 . 2
1413eqriv 2350 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   F/wnf 1544   wceq 1642  wsb 1648   wcel 1710  cab 2339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346
This theorem is referenced by:  cbvabv  2473  cbvrab  2858  cbvsbc  3075  cbvrabcsf  3202  dfdmf  4906  dfrnf  4963  funfv2f  5378
  Copyright terms: Public domain W3C validator