New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5bbr | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bbr.1 | |
syl5bbr.2 |
Ref | Expression |
---|---|
syl5bbr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bbr.1 | . . 3 | |
2 | 1 | bicomi 193 | . 2 |
3 | syl5bbr.2 | . 2 | |
4 | 2, 3 | syl5bb 248 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3bitr3g 278 biass 348 19.16 1860 19.19 1862 sbco2 2086 cbvab 2472 necon1bbid 2571 necon4abid 2581 elabgt 2983 sbceq1a 3057 sbcralt 3119 sbccsbg 3165 sbccsb2g 3166 opkelimagekg 4272 vfin1cltv 4548 phialllem1 4617 phiall 4619 xp11 5057 nfunv 5139 fnssresb 5196 fun11iun 5306 dffo4 5424 elunirn 5471 isomin 5497 resoprab2 5583 nchoicelem11 6300 |
Copyright terms: Public domain | W3C validator |