NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5bbr Unicode version

Theorem syl5bbr 250
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl5bbr.1
syl5bbr.2
Assertion
Ref Expression
syl5bbr

Proof of Theorem syl5bbr
StepHypRef Expression
1 syl5bbr.1 . . 3
21bicomi 193 . 2
3 syl5bbr.2 . 2
42, 3syl5bb 248 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  3bitr3g  278  biass  348  19.16  1860  19.19  1862  sbco2  2086  cbvab  2472  necon1bbid  2571  necon4abid  2581  elabgt  2983  sbceq1a  3057  sbcralt  3119  sbccsbg  3165  sbccsb2g  3166  opkelimagekg  4272  vfin1cltv  4548  phialllem1  4617  phiall  4619  xp11  5057  nfunv  5139  fnssresb  5196  fun11iun  5306  dffo4  5424  elunirn  5471  isomin  5497  resoprab2  5583  nchoicelem11  6300
  Copyright terms: Public domain W3C validator