New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvab | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
cbvab.1 | ⊢ Ⅎyφ |
cbvab.2 | ⊢ Ⅎxψ |
cbvab.3 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvab | ⊢ {x ∣ φ} = {y ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvab.2 | . . . . 5 ⊢ Ⅎxψ | |
2 | 1 | nfsb 2109 | . . . 4 ⊢ Ⅎx[z / y]ψ |
3 | cbvab.1 | . . . . . 6 ⊢ Ⅎyφ | |
4 | cbvab.3 | . . . . . . . 8 ⊢ (x = y → (φ ↔ ψ)) | |
5 | 4 | equcoms 1681 | . . . . . . 7 ⊢ (y = x → (φ ↔ ψ)) |
6 | 5 | bicomd 192 | . . . . . 6 ⊢ (y = x → (ψ ↔ φ)) |
7 | 3, 6 | sbie 2038 | . . . . 5 ⊢ ([x / y]ψ ↔ φ) |
8 | sbequ 2060 | . . . . 5 ⊢ (x = z → ([x / y]ψ ↔ [z / y]ψ)) | |
9 | 7, 8 | syl5bbr 250 | . . . 4 ⊢ (x = z → (φ ↔ [z / y]ψ)) |
10 | 2, 9 | sbie 2038 | . . 3 ⊢ ([z / x]φ ↔ [z / y]ψ) |
11 | df-clab 2340 | . . 3 ⊢ (z ∈ {x ∣ φ} ↔ [z / x]φ) | |
12 | df-clab 2340 | . . 3 ⊢ (z ∈ {y ∣ ψ} ↔ [z / y]ψ) | |
13 | 10, 11, 12 | 3bitr4i 268 | . 2 ⊢ (z ∈ {x ∣ φ} ↔ z ∈ {y ∣ ψ}) |
14 | 13 | eqriv 2350 | 1 ⊢ {x ∣ φ} = {y ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: cbvabv 2472 cbvrab 2857 cbvsbc 3074 cbvrabcsf 3201 dfdmf 4905 dfrnf 4962 funfv2f 5377 |
Copyright terms: Public domain | W3C validator |