| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > coss1 | Unicode version | ||
| Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
| Ref | Expression |
|---|---|
| coss1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . 6
| |
| 2 | 1 | ssbrd 4681 |
. . . . 5
|
| 3 | 2 | anim2d 548 |
. . . 4
|
| 4 | 3 | eximdv 1622 |
. . 3
|
| 5 | 4 | ssopab2dv 4716 |
. 2
|
| 6 | df-co 4727 |
. 2
| |
| 7 | df-co 4727 |
. 2
| |
| 8 | 5, 6, 7 | 3sstr4g 3313 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-co 4727 |
| This theorem is referenced by: coeq1 4875 funss 5127 |
| Copyright terms: Public domain | W3C validator |