New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > coeq1 | Unicode version |
Description: Equality theorem for composition of two classes. (Contributed by set.mm contributors, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1 4873 | . . 3 | |
2 | coss1 4873 | . . 3 | |
3 | 1, 2 | anim12i 549 | . 2 |
4 | eqss 3288 | . 2 | |
5 | eqss 3288 | . 2 | |
6 | 3, 4, 5 | 3imtr4i 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wss 3258 ccom 4722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-co 4727 |
This theorem is referenced by: coeq1i 4877 coeq1d 4879 composevalg 5818 pprodeq1 5835 pprodeq2 5836 enmap2lem3 6066 enmap2lem5 6068 |
Copyright terms: Public domain | W3C validator |