NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  coss1 GIF version

Theorem coss1 4873
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1 (A B → (A C) (B C))

Proof of Theorem coss1
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . . . 6 (A BA B)
21ssbrd 4681 . . . . 5 (A B → (yAzyBz))
32anim2d 548 . . . 4 (A B → ((xCy yAz) → (xCy yBz)))
43eximdv 1622 . . 3 (A B → (y(xCy yAz) → y(xCy yBz)))
54ssopab2dv 4716 . 2 (A B → {x, z y(xCy yAz)} {x, z y(xCy yBz)})
6 df-co 4727 . 2 (A C) = {x, z y(xCy yAz)}
7 df-co 4727 . 2 (B C) = {x, z y(xCy yBz)}
85, 6, 73sstr4g 3313 1 (A B → (A C) (B C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   wss 3258  {copab 4623   class class class wbr 4640   ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-br 4641  df-co 4727
This theorem is referenced by:  coeq1  4875  funss  5127
  Copyright terms: Public domain W3C validator