New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > coss1 | GIF version |
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
coss1 | ⊢ (A ⊆ B → (A ∘ C) ⊆ (B ∘ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . . . 6 ⊢ (A ⊆ B → A ⊆ B) | |
2 | 1 | ssbrd 4681 | . . . . 5 ⊢ (A ⊆ B → (yAz → yBz)) |
3 | 2 | anim2d 548 | . . . 4 ⊢ (A ⊆ B → ((xCy ∧ yAz) → (xCy ∧ yBz))) |
4 | 3 | eximdv 1622 | . . 3 ⊢ (A ⊆ B → (∃y(xCy ∧ yAz) → ∃y(xCy ∧ yBz))) |
5 | 4 | ssopab2dv 4716 | . 2 ⊢ (A ⊆ B → {〈x, z〉 ∣ ∃y(xCy ∧ yAz)} ⊆ {〈x, z〉 ∣ ∃y(xCy ∧ yBz)}) |
6 | df-co 4727 | . 2 ⊢ (A ∘ C) = {〈x, z〉 ∣ ∃y(xCy ∧ yAz)} | |
7 | df-co 4727 | . 2 ⊢ (B ∘ C) = {〈x, z〉 ∣ ∃y(xCy ∧ yBz)} | |
8 | 5, 6, 7 | 3sstr4g 3313 | 1 ⊢ (A ⊆ B → (A ∘ C) ⊆ (B ∘ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ⊆ wss 3258 {copab 4623 class class class wbr 4640 ∘ ccom 4722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-co 4727 |
This theorem is referenced by: coeq1 4875 funss 5127 |
Copyright terms: Public domain | W3C validator |