NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbie2g Unicode version

Theorem csbie2g 3183
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3081 avoids a disjointness condition on by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
Hypotheses
Ref Expression
csbie2g.1
csbie2g.2
Assertion
Ref Expression
csbie2g
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   (,)

Proof of Theorem csbie2g
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-csb 3138 . 2  [.  ].
2 csbie2g.1 . . . . 5
32eleq2d 2420 . . . 4
4 csbie2g.2 . . . . 5
54eleq2d 2420 . . . 4
63, 5sbcie2g 3080 . . 3  [.  ].
76abbi1dv 2470 . 2  [.  ].
81, 7syl5eq 2397 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642   wcel 1710  cab 2339   [.wsbc 3047  csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator