New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbie2g | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3081 avoids a disjointness condition on x, A by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
csbie2g.1 | ⊢ (x = y → B = C) |
csbie2g.2 | ⊢ (y = A → C = D) |
Ref | Expression |
---|---|
csbie2g | ⊢ (A ∈ V → [A / x]B = D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3138 | . 2 ⊢ [A / x]B = {z ∣ [̣A / x]̣z ∈ B} | |
2 | csbie2g.1 | . . . . 5 ⊢ (x = y → B = C) | |
3 | 2 | eleq2d 2420 | . . . 4 ⊢ (x = y → (z ∈ B ↔ z ∈ C)) |
4 | csbie2g.2 | . . . . 5 ⊢ (y = A → C = D) | |
5 | 4 | eleq2d 2420 | . . . 4 ⊢ (y = A → (z ∈ C ↔ z ∈ D)) |
6 | 3, 5 | sbcie2g 3080 | . . 3 ⊢ (A ∈ V → ([̣A / x]̣z ∈ B ↔ z ∈ D)) |
7 | 6 | abbi1dv 2470 | . 2 ⊢ (A ∈ V → {z ∣ [̣A / x]̣z ∈ B} = D) |
8 | 1, 7 | syl5eq 2397 | 1 ⊢ (A ∈ V → [A / x]B = D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |