NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbie2g GIF version

Theorem csbie2g 3183
Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie 3081 avoids a disjointness condition on x, A by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.)
Hypotheses
Ref Expression
csbie2g.1 (x = yB = C)
csbie2g.2 (y = AC = D)
Assertion
Ref Expression
csbie2g (A V[A / x]B = D)
Distinct variable groups:   x,y   y,A   y,B   x,C   y,D
Allowed substitution hints:   A(x)   B(x)   C(y)   D(x)   V(x,y)

Proof of Theorem csbie2g
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3138 . 2 [A / x]B = {z A / xz B}
2 csbie2g.1 . . . . 5 (x = yB = C)
32eleq2d 2420 . . . 4 (x = y → (z Bz C))
4 csbie2g.2 . . . . 5 (y = AC = D)
54eleq2d 2420 . . . 4 (y = A → (z Cz D))
63, 5sbcie2g 3080 . . 3 (A V → ([̣A / xz Bz D))
76abbi1dv 2470 . 2 (A V → {z A / xz B} = D)
81, 7syl5eq 2397 1 (A V[A / x]B = D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  {cab 2339  wsbc 3047  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator