NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedth4v Unicode version

Theorem dedth4v 3710
Description: Weak deduction theorem for eliminating a hypothesis with 4 class variables. See comments in dedth2v 3708. (Contributed by NM, 21-Apr-2007.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth4v.1
dedth4v.2
dedth4v.3
dedth4v.4
dedth4v.5
Assertion
Ref Expression
dedth4v

Proof of Theorem dedth4v
StepHypRef Expression
1 dedth4v.1 . . . 4
2 dedth4v.2 . . . 4
3 dedth4v.3 . . . 4
4 dedth4v.4 . . . 4
5 dedth4v.5 . . . 4
61, 2, 3, 4, 5dedth4h 3707 . . 3
76anidms 626 . 2
87anidms 626 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642  cif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator