New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anidms | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 |
Ref | Expression |
---|---|
anidms |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 | |
2 | 1 | ex 423 | . 2 |
3 | 2 | pm2.43i 43 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylancb 646 sylancbr 647 compleq 3244 dedth2v 3708 dedth3v 3709 dedth4v 3710 intsng 3962 complexg 4100 pw1exg 4303 ltfinirr 4458 lefinrflx 4468 0ceven 4506 evennn 4507 oddnn 4508 sucoddeven 4512 evenodddisj 4517 eventfin 4518 oddtfin 4519 nnpweq 4524 sfindbl 4531 sfintfin 4533 xpid11 4927 dfxp2 5114 brtxp 5784 elfix 5788 lecidg 6197 nncdiv3 6278 nnc3n3p1 6279 nnc3n3p2 6280 nnc3p1n3p2 6281 nchoicelem1 6290 nchoicelem2 6291 |
Copyright terms: Public domain | W3C validator |