New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimhyp Unicode version

Theorem elimhyp 3710
 Description: Eliminate a hypothesis containing class variable when it is known for a specific class . For more information, see comments in dedth 3703. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
elimhyp.1
elimhyp.2
elimhyp.3
Assertion
Ref Expression
elimhyp

Proof of Theorem elimhyp
StepHypRef Expression
1 iftrue 3668 . . . . 5
21eqcomd 2358 . . . 4
3 elimhyp.1 . . . 4
42, 3syl 15 . . 3
54ibi 232 . 2
6 elimhyp.3 . . 3
7 iffalse 3669 . . . . 5
87eqcomd 2358 . . . 4
9 elimhyp.2 . . . 4
108, 9syl 15 . . 3
116, 10mpbii 202 . 2
125, 11pm2.61i 156 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176   wceq 1642  cif 3662 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3663 This theorem is referenced by:  elimel  3714  elimf  5222
 Copyright terms: Public domain W3C validator