New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dff1o3 | Unicode version |
Description: Alternate definition of one-to-one onto function. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 25-Mar-1998.) (Revised by set.mm contributors, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . . 3 | |
2 | an32 773 | . . 3 | |
3 | 1, 2 | bitri 240 | . 2 |
4 | dff1o2 5291 | . 2 | |
5 | df-fo 4793 | . . 3 | |
6 | 5 | anbi1i 676 | . 2 |
7 | 3, 4, 6 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 w3a 934 wceq 1642 ccnv 4771 crn 4773 wfun 4775 wfn 4776 wfo 4779 wf1o 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
This theorem is referenced by: f1ofo 5293 f1ores 5300 resdif 5306 f11o 5315 |
Copyright terms: Public domain | W3C validator |