New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dff1o3 | GIF version |
Description: Alternate definition of one-to-one onto function. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 25-Mar-1998.) (Revised by set.mm contributors, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o3 | ⊢ (F:A–1-1-onto→B ↔ (F:A–onto→B ∧ Fun ◡F)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . . 3 ⊢ ((F Fn A ∧ Fun ◡F ∧ ran F = B) ↔ ((F Fn A ∧ Fun ◡F) ∧ ran F = B)) | |
2 | an32 773 | . . 3 ⊢ (((F Fn A ∧ Fun ◡F) ∧ ran F = B) ↔ ((F Fn A ∧ ran F = B) ∧ Fun ◡F)) | |
3 | 1, 2 | bitri 240 | . 2 ⊢ ((F Fn A ∧ Fun ◡F ∧ ran F = B) ↔ ((F Fn A ∧ ran F = B) ∧ Fun ◡F)) |
4 | dff1o2 5292 | . 2 ⊢ (F:A–1-1-onto→B ↔ (F Fn A ∧ Fun ◡F ∧ ran F = B)) | |
5 | df-fo 4794 | . . 3 ⊢ (F:A–onto→B ↔ (F Fn A ∧ ran F = B)) | |
6 | 5 | anbi1i 676 | . 2 ⊢ ((F:A–onto→B ∧ Fun ◡F) ↔ ((F Fn A ∧ ran F = B) ∧ Fun ◡F)) |
7 | 3, 4, 6 | 3bitr4i 268 | 1 ⊢ (F:A–1-1-onto→B ↔ (F:A–onto→B ∧ Fun ◡F)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ◡ccnv 4772 ran crn 4774 Fun wfun 4776 Fn wfn 4777 –onto→wfo 4780 –1-1-onto→wf1o 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 |
This theorem is referenced by: f1ofo 5294 f1ores 5301 resdif 5307 f11o 5316 |
Copyright terms: Public domain | W3C validator |