NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dff1o2 Unicode version

Theorem dff1o2 5292
Description: Alternate definition of one-to-one onto function. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 10-Feb-1997.) (Revised by set.mm contributors, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 4795 . 2
2 df-f1 4793 . . 3
3 df-fo 4794 . . 3
42, 3anbi12i 678 . 2
5 ancom 437 . . . 4
6 3anass 938 . . . . . 6
7 an12 772 . . . . . 6
86, 7bitri 240 . . . . 5
98anbi1i 676 . . . 4
105, 9bitr4i 243 . . 3
11 anass 630 . . 3
12 eqimss 3324 . . . . . 6
13 df-f 4792 . . . . . . 7
1413biimpri 197 . . . . . 6
1512, 14sylan2 460 . . . . 5
16153adant2 974 . . . 4
1716pm4.71i 613 . . 3
1810, 11, 173bitr4i 268 . 2
191, 4, 183bitri 262 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358   w3a 934   wceq 1642   wss 3258  ccnv 4772   crn 4774   wfun 4776   wfn 4777  wf 4778  wf1 4779  wfo 4780  wf1o 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795
This theorem is referenced by:  dff1o3  5293  dff1o4  5295  f1orn  5297  fundmen  6044  enmap1  6075  enprmap  6083  sbthlem3  6206
  Copyright terms: Public domain W3C validator