NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  difindi Unicode version

Theorem difindi 3509
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difindi

Proof of Theorem difindi
StepHypRef Expression
1 dfin3 3494 . . 3
21difeq2i 3382 . 2
3 indi 3501 . . 3
4 dfin2 3491 . . 3
5 invdif 3496 . . . 4
6 invdif 3496 . . . 4
75, 6uneq12i 3416 . . 3
83, 4, 73eqtr3i 2381 . 2
92, 8eqtri 2373 1
Colors of variables: wff setvar class
Syntax hints:   wceq 1642  cvv 2859   cdif 3206   cun 3207   cin 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215
This theorem is referenced by:  indm  3513
  Copyright terms: Public domain W3C validator