HomeHome New Foundations Explorer
Theorem List (p. 36 of 64)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 3501-3600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremindifcom 3501 Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.)
 
Theoremindi 3502 Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremundi 3503 Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremindir 3504 Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
 
Theoremundir 3505 Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
 
Theoremunineq 3506 Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.)
 
Theoremuneqin 3507 Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremdifundi 3508 Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
 
Theoremdifundir 3509 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
 
Theoremdifindi 3510 Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
 
Theoremdifindir 3511 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
 
Theoremindifdir 3512 Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
 
Theoremundm 3513 De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
 
Theoremindm 3514 De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
 
Theoremdifun1 3515 A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
 
Theoremundif3 3516 An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.)
 
Theoremdifin2 3517 Represent a set difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
 
Theoremdif32 3518 Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
 
Theoremdifabs 3519 Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
 
Theoremsymdif1 3520 Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
 
Theoremsymdif2 3521* Two ways to express symmetric difference. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremunab 3522 Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoreminab 3523 Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremdifab 3524 Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremcomplab 3525 Complement of a class abstraction. (Contributed by SF, 12-Jan-2015.)
 
Theoremnotab 3526 A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
 
Theoremunrab 3527 Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
 
Theoreminrab 3528 Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
 
Theoreminrab2 3529* Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
 
Theoremdifrab 3530 Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
 
Theoremdfrab2 3531* Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
 
Theoremdfrab3 3532* Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
 
Theoremnotrab 3533* Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
 
Theoremdfrab3ss 3534* Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
 
Theoremrabun2 3535 Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
 
Theoremreuss2 3536* Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
 
Theoremreuss 3537* Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
 
Theoremreuun1 3538* Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
 
Theoremreuun2 3539* Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
 
Theoremreupick 3540* Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
 
Theoremreupick3 3541* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
 
Theoremreupick2 3542* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 
Theoremsymdifcom 3543 Symmetric difference commutes. (Contributed by SF, 11-Jan-2015.)
 
Theoremcompleqb 3544 Two classes are equal iff their complements are equal. (Contributed by SF, 11-Jan-2015.)
 
Theoremnecompl 3545 A class is not equal to its complement. (Contributed by SF, 11-Jan-2015.)
 
Theoremdfin5 3546 Definition of intersection in terms of union. (Contributed by SF, 12-Jan-2015.)
 
Theoremdfun4 3547 Definition of union in terms of intersection. (Contributed by SF, 12-Jan-2015.)
 
Theoremiunin 3548 Intersection of two complements is equal to the complement of a union. (Contributed by SF, 12-Jan-2015.)
 
Theoremiinun 3549 Complement of intersection is equal to union of complements. (Contributed by SF, 12-Jan-2015.)
 
Theoremdifsscompl 3550 A difference is a subset of the complement of its second argument. (Contributed by SF, 10-Mar-2015.)
 
2.1.13  The empty set
 
Syntaxc0 3551 Extend class notation to include the empty set.
 
Definitiondf-nul 3552 Define the empty set. Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 3553. (Contributed by NM, 5-Aug-1993.)
 
Theoremdfnul2 3553 Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.)
 
Theoremdfnul3 3554 Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
 
Theoremnoel 3555 The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
 
Theoremn0i 3556 If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.)
 
Theoremne0i 3557 If a set has elements, it is not empty. (Contributed by NM, 31-Dec-1993.)
 
Theoremvn0 3558 The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
 
Theoremn0f 3559 A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 3560 requires only that not be free in, rather than not occur in, . (Contributed by NM, 17-Oct-2003.)
 F/_   =>   
 
Theoremn0 3560* A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 29-Sep-2006.)
 
Theoremneq0 3561* A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 5-Aug-1993.)
 
Theoremreximdva0 3562* Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
   =>   
 
Theoremn0moeu 3563* A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.)
 
Theoremrex0 3564 Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
 
Theoremeq0 3565* The empty set has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.)
 
Theoremeqv 3566* The universe contains every set. (Contributed by NM, 11-Sep-2006.)
 
Theorem0el 3567* Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
 
Theoremabvor0 3568* The class builder of a wff not containing the abstraction variable is either the universal class or the empty set. (Contributed by Mario Carneiro, 29-Aug-2013.)
 
Theoremabn0 3569 Nonempty class abstraction. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 
Theoremab0 3570 Empty class abstraction. (Contributed by SF, 5-Jan-2018.)
 
Theoremrabn0 3571 Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.)
 
Theoremrab0 3572 Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremrabeq0 3573 Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
 
Theoremrabxm 3574* Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
 
Theoremrabnc 3575* Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
 
Theoremun0 3576 The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
 
Theoremin0 3577 The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
 
Theoreminv1 3578 The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
 
Theoremunv 3579 The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
 
Theorem0ss 3580 The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
 
Theoremss0b 3581 Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.)
 
Theoremss0 3582 Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23. (Contributed by NM, 13-Aug-1994.)
 
Theoremsseq0 3583 A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremssn0 3584 A class with a nonempty subclass is nonempty. (Contributed by NM, 17-Feb-2007.)
 
Theoremabf 3585 A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.)
   =>   
 
Theoremeq0rdv 3586* Deduction rule for equality to the empty set. (Contributed by NM, 11-Jul-2014.)
   =>   
 
Theoremun00 3587 Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
 
Theoremvss 3588 Only the universal class has the universal class as a subclass. (Contributed by NM, 17-Sep-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theorem0pss 3589 The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
 
Theoremnpss0 3590 No set is a proper subset of the empty set. (Contributed by NM, 17-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theorempssv 3591 Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998.)
 
Theoremdisj 3592* Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
 
Theoremdisjr 3593* Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
 
Theoremdisj1 3594* Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
 
Theoremreldisj 3595 Two ways of saying that two classes are disjoint, using the complement of relative to a universe . (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremdisj3 3596 Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
 
Theoremdisjne 3597 Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 
Theoremdisjel 3598 A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
 
Theoremdisj2 3599 Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
 
Theoremdisj4 3600 Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004.)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >