New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difindi | GIF version |
Description: Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
difindi | ⊢ (A ∖ (B ∩ C)) = ((A ∖ B) ∪ (A ∖ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin3 3495 | . . 3 ⊢ (B ∩ C) = (V ∖ ((V ∖ B) ∪ (V ∖ C))) | |
2 | 1 | difeq2i 3383 | . 2 ⊢ (A ∖ (B ∩ C)) = (A ∖ (V ∖ ((V ∖ B) ∪ (V ∖ C)))) |
3 | indi 3502 | . . 3 ⊢ (A ∩ ((V ∖ B) ∪ (V ∖ C))) = ((A ∩ (V ∖ B)) ∪ (A ∩ (V ∖ C))) | |
4 | dfin2 3492 | . . 3 ⊢ (A ∩ ((V ∖ B) ∪ (V ∖ C))) = (A ∖ (V ∖ ((V ∖ B) ∪ (V ∖ C)))) | |
5 | invdif 3497 | . . . 4 ⊢ (A ∩ (V ∖ B)) = (A ∖ B) | |
6 | invdif 3497 | . . . 4 ⊢ (A ∩ (V ∖ C)) = (A ∖ C) | |
7 | 5, 6 | uneq12i 3417 | . . 3 ⊢ ((A ∩ (V ∖ B)) ∪ (A ∩ (V ∖ C))) = ((A ∖ B) ∪ (A ∖ C)) |
8 | 3, 4, 7 | 3eqtr3i 2381 | . 2 ⊢ (A ∖ (V ∖ ((V ∖ B) ∪ (V ∖ C)))) = ((A ∖ B) ∪ (A ∖ C)) |
9 | 2, 8 | eqtri 2373 | 1 ⊢ (A ∖ (B ∩ C)) = ((A ∖ B) ∪ (A ∖ C)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 Vcvv 2860 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 |
This theorem is referenced by: indm 3514 |
Copyright terms: Public domain | W3C validator |