New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difun1 | Unicode version |
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difun1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 3465 | . . . 4 | |
2 | invdif 3496 | . . . 4 | |
3 | 1, 2 | eqtr3i 2375 | . . 3 |
4 | undm 3512 | . . . . 5 | |
5 | 4 | ineq2i 3454 | . . . 4 |
6 | invdif 3496 | . . . 4 | |
7 | 5, 6 | eqtr3i 2375 | . . 3 |
8 | 3, 7 | eqtr3i 2375 | . 2 |
9 | invdif 3496 | . . 3 | |
10 | 9 | difeq1i 3381 | . 2 |
11 | 8, 10 | eqtr3i 2375 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 cvv 2859 cdif 3206 cun 3207 cin 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 |
This theorem is referenced by: dif32 3517 difabs 3518 |
Copyright terms: Public domain | W3C validator |