![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ineq2i | Unicode version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ineq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | ineq2 3451 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 8 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 |
This theorem is referenced by: in4 3471 inindir 3473 indif2 3498 difun1 3514 dfrab3ss 3533 undif1 3625 difdifdir 3637 dfif3 3672 dfif5 3674 intunsn 3965 rint0 3966 riin0 4039 inindif 4075 ssfin 4470 spfinex 4537 res0 4977 resres 4980 resundi 4981 resindi 4983 inres 4985 resopab 4999 dminxp 5061 resdmres 5078 funimacnv 5168 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |