| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elimif | Unicode version | ||
| Description: Elimination of a
conditional operator contained in a wff |
| Ref | Expression |
|---|---|
| elimif.1 |
|
| elimif.2 |
|
| Ref | Expression |
|---|---|
| elimif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 404 |
. . 3
| |
| 2 | 1 | biantrur 492 |
. 2
|
| 3 | andir 838 |
. 2
| |
| 4 | iftrue 3669 |
. . . . 5
| |
| 5 | elimif.1 |
. . . . 5
| |
| 6 | 4, 5 | syl 15 |
. . . 4
|
| 7 | 6 | pm5.32i 618 |
. . 3
|
| 8 | iffalse 3670 |
. . . . 5
| |
| 9 | elimif.2 |
. . . . 5
| |
| 10 | 8, 9 | syl 15 |
. . . 4
|
| 11 | 10 | pm5.32i 618 |
. . 3
|
| 12 | 7, 11 | orbi12i 507 |
. 2
|
| 13 | 2, 3, 12 | 3bitri 262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
| This theorem is referenced by: eqif 3696 elif 3697 ifel 3698 |
| Copyright terms: Public domain | W3C validator |