New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimif | GIF version |
Description: Elimination of a conditional operator contained in a wff ψ. (Contributed by NM, 15-Feb-2005.) |
Ref | Expression |
---|---|
elimif.1 | ⊢ ( if(φ, A, B) = A → (ψ ↔ χ)) |
elimif.2 | ⊢ ( if(φ, A, B) = B → (ψ ↔ θ)) |
Ref | Expression |
---|---|
elimif | ⊢ (ψ ↔ ((φ ∧ χ) ∨ (¬ φ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 404 | . . 3 ⊢ (φ ∨ ¬ φ) | |
2 | 1 | biantrur 492 | . 2 ⊢ (ψ ↔ ((φ ∨ ¬ φ) ∧ ψ)) |
3 | andir 838 | . 2 ⊢ (((φ ∨ ¬ φ) ∧ ψ) ↔ ((φ ∧ ψ) ∨ (¬ φ ∧ ψ))) | |
4 | iftrue 3669 | . . . . 5 ⊢ (φ → if(φ, A, B) = A) | |
5 | elimif.1 | . . . . 5 ⊢ ( if(φ, A, B) = A → (ψ ↔ χ)) | |
6 | 4, 5 | syl 15 | . . . 4 ⊢ (φ → (ψ ↔ χ)) |
7 | 6 | pm5.32i 618 | . . 3 ⊢ ((φ ∧ ψ) ↔ (φ ∧ χ)) |
8 | iffalse 3670 | . . . . 5 ⊢ (¬ φ → if(φ, A, B) = B) | |
9 | elimif.2 | . . . . 5 ⊢ ( if(φ, A, B) = B → (ψ ↔ θ)) | |
10 | 8, 9 | syl 15 | . . . 4 ⊢ (¬ φ → (ψ ↔ θ)) |
11 | 10 | pm5.32i 618 | . . 3 ⊢ ((¬ φ ∧ ψ) ↔ (¬ φ ∧ θ)) |
12 | 7, 11 | orbi12i 507 | . 2 ⊢ (((φ ∧ ψ) ∨ (¬ φ ∧ ψ)) ↔ ((φ ∧ χ) ∨ (¬ φ ∧ θ))) |
13 | 2, 3, 12 | 3bitri 262 | 1 ⊢ (ψ ↔ ((φ ∧ χ) ∨ (¬ φ ∧ θ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 = wceq 1642 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: eqif 3696 elif 3697 ifel 3698 |
Copyright terms: Public domain | W3C validator |