NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elintg Unicode version

Theorem elintg 3935
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem elintg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2413 . 2
2 eleq1 2413 . . 3
32ralbidv 2635 . 2
4 vex 2863 . . 3
54elint2 3934 . 2
61, 3, 5vtoclbg 2916 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642   wcel 1710  wral 2615  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-int 3928
This theorem is referenced by:  elinti  3936  elrint  3968
  Copyright terms: Public domain W3C validator