New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elintg | GIF version |
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) |
Ref | Expression |
---|---|
elintg | ⊢ (A ∈ V → (A ∈ ∩B ↔ ∀x ∈ B A ∈ x)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . 2 ⊢ (y = A → (y ∈ ∩B ↔ A ∈ ∩B)) | |
2 | eleq1 2413 | . . 3 ⊢ (y = A → (y ∈ x ↔ A ∈ x)) | |
3 | 2 | ralbidv 2635 | . 2 ⊢ (y = A → (∀x ∈ B y ∈ x ↔ ∀x ∈ B A ∈ x)) |
4 | vex 2863 | . . 3 ⊢ y ∈ V | |
5 | 4 | elint2 3934 | . 2 ⊢ (y ∈ ∩B ↔ ∀x ∈ B y ∈ x) |
6 | 1, 3, 5 | vtoclbg 2916 | 1 ⊢ (A ∈ V → (A ∈ ∩B ↔ ∀x ∈ B A ∈ x)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-int 3928 |
This theorem is referenced by: elinti 3936 elrint 3968 |
Copyright terms: Public domain | W3C validator |