| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elpw151c | Unicode version | ||
| Description: Membership in  | 
| Ref | Expression | 
|---|---|
| elpw151c | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpw1 4145 | 
. 2
 | |
| 2 | df-rex 2621 | 
. . . 4
 | |
| 3 | elpw141c 4151 | 
. . . . . . 7
 | |
| 4 | 3 | anbi1i 676 | 
. . . . . 6
 | 
| 5 | 19.41v 1901 | 
. . . . . 6
 | |
| 6 | 4, 5 | bitr4i 243 | 
. . . . 5
 | 
| 7 | 6 | exbii 1582 | 
. . . 4
 | 
| 8 | 2, 7 | bitri 240 | 
. . 3
 | 
| 9 | excom 1741 | 
. . . 4
 | |
| 10 | snex 4112 | 
. . . . . 6
 | |
| 11 | sneq 3745 | 
. . . . . . 7
 | |
| 12 | 11 | eqeq2d 2364 | 
. . . . . 6
 | 
| 13 | 10, 12 | ceqsexv 2895 | 
. . . . 5
 | 
| 14 | 13 | exbii 1582 | 
. . . 4
 | 
| 15 | 9, 14 | bitri 240 | 
. . 3
 | 
| 16 | 8, 15 | bitri 240 | 
. 2
 | 
| 17 | 1, 16 | bitri 240 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 | 
| This theorem is referenced by: elpw161c 4153 | 
| Copyright terms: Public domain | W3C validator |