NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3725
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of . When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if 3 , 5 , 7 , then 3 5 7 3 , 5 3 , 7 5 , 7 3 , 5 , 7 (ex-pw in set.mm). We will later introduce the Axiom of Power Sets ax-pow in set.mm, which can be expressed in class notation per pwexg 4329. Still later we will prove, in hashpw in set.mm, that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3
21cpw 3723 . 2
3 vx . . . . 5
43cv 1641 . . . 4
54, 1wss 3258 . . 3
65, 3cab 2339 . 2
72, 6wceq 1642 1
Colors of variables: wff setvar class
This definition is referenced by:  pweq  3726  elpw  3729  nfpw  3734  pwss  3737  pwpw0  3856  snsspw  3878  pwsn  3882  pwsnALT  3883  pw0  4161  eqpwrelk  4479  srelk  4525  pmex  6006  pmvalg  6011  enpw1pw  6076
  Copyright terms: Public domain W3C validator