New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  eubid Unicode version

Theorem eubid 2211
 Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1
eubid.2
Assertion
Ref Expression
eubid

Proof of Theorem eubid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4
2 eubid.2 . . . . 5
32bibi1d 310 . . . 4
41, 3albid 1772 . . 3
54exbidv 1626 . 2
6 df-eu 2208 . 2
7 df-eu 2208 . 2
85, 6, 73bitr4g 279 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176  wal 1540  wex 1541  wnf 1544   wceq 1642  weu 2204 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-eu 2208 This theorem is referenced by:  eubidv  2212  euor  2231  mobid  2238  euan  2261  eupickbi  2270  euor2  2272  reubida  2793  reueq1f  2805
 Copyright terms: Public domain W3C validator