New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eubid | GIF version |
Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubid.1 | ⊢ Ⅎxφ |
eubid.2 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
eubid | ⊢ (φ → (∃!xψ ↔ ∃!xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubid.1 | . . . 4 ⊢ Ⅎxφ | |
2 | eubid.2 | . . . . 5 ⊢ (φ → (ψ ↔ χ)) | |
3 | 2 | bibi1d 310 | . . . 4 ⊢ (φ → ((ψ ↔ x = y) ↔ (χ ↔ x = y))) |
4 | 1, 3 | albid 1772 | . . 3 ⊢ (φ → (∀x(ψ ↔ x = y) ↔ ∀x(χ ↔ x = y))) |
5 | 4 | exbidv 1626 | . 2 ⊢ (φ → (∃y∀x(ψ ↔ x = y) ↔ ∃y∀x(χ ↔ x = y))) |
6 | df-eu 2208 | . 2 ⊢ (∃!xψ ↔ ∃y∀x(ψ ↔ x = y)) | |
7 | df-eu 2208 | . 2 ⊢ (∃!xχ ↔ ∃y∀x(χ ↔ x = y)) | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (φ → (∃!xψ ↔ ∃!xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-eu 2208 |
This theorem is referenced by: eubidv 2212 euor 2231 mobid 2238 euan 2261 eupickbi 2270 euor2 2272 reubida 2794 reueq1f 2806 |
Copyright terms: Public domain | W3C validator |