New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exdistrf | Unicode version |
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that is not free in , but can be free in (and there is no distinct variable condition on and ). (Contributed by Mario Carneiro, 20-Mar-2013.) |
Ref | Expression |
---|---|
exdistrf.1 |
Ref | Expression |
---|---|
exdistrf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 228 | . . . . 5 | |
2 | 1 | drex1 1967 | . . . 4 |
3 | 2 | drex2 1968 | . . 3 |
4 | nfe1 1732 | . . . . 5 | |
5 | 4 | 19.9 1783 | . . . 4 |
6 | 19.8a 1756 | . . . . . 6 | |
7 | 6 | anim2i 552 | . . . . 5 |
8 | 7 | eximi 1576 | . . . 4 |
9 | 5, 8 | sylbi 187 | . . 3 |
10 | 3, 9 | syl6bir 220 | . 2 |
11 | nfnae 1956 | . . 3 | |
12 | 19.40 1609 | . . . 4 | |
13 | exdistrf.1 | . . . . . 6 | |
14 | 13 | 19.9d 1782 | . . . . 5 |
15 | 14 | anim1d 547 | . . . 4 |
16 | 12, 15 | syl5 28 | . . 3 |
17 | 11, 16 | eximd 1770 | . 2 |
18 | 10, 17 | pm2.61i 156 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wal 1540 wex 1541 wnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: oprabid 5551 |
Copyright terms: Public domain | W3C validator |