![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > exdistrf | GIF version |
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that y is not free in φ, but x can be free in φ (and there is no distinct variable condition on x and y). (Contributed by Mario Carneiro, 20-Mar-2013.) |
Ref | Expression |
---|---|
exdistrf.1 | ⊢ (¬ ∀x x = y → Ⅎyφ) |
Ref | Expression |
---|---|
exdistrf | ⊢ (∃x∃y(φ ∧ ψ) → ∃x(φ ∧ ∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 228 | . . . . 5 ⊢ (∀x x = y → ((φ ∧ ψ) ↔ (φ ∧ ψ))) | |
2 | 1 | drex1 1967 | . . . 4 ⊢ (∀x x = y → (∃x(φ ∧ ψ) ↔ ∃y(φ ∧ ψ))) |
3 | 2 | drex2 1968 | . . 3 ⊢ (∀x x = y → (∃x∃x(φ ∧ ψ) ↔ ∃x∃y(φ ∧ ψ))) |
4 | nfe1 1732 | . . . . 5 ⊢ Ⅎx∃x(φ ∧ ψ) | |
5 | 4 | 19.9 1783 | . . . 4 ⊢ (∃x∃x(φ ∧ ψ) ↔ ∃x(φ ∧ ψ)) |
6 | 19.8a 1756 | . . . . . 6 ⊢ (ψ → ∃yψ) | |
7 | 6 | anim2i 552 | . . . . 5 ⊢ ((φ ∧ ψ) → (φ ∧ ∃yψ)) |
8 | 7 | eximi 1576 | . . . 4 ⊢ (∃x(φ ∧ ψ) → ∃x(φ ∧ ∃yψ)) |
9 | 5, 8 | sylbi 187 | . . 3 ⊢ (∃x∃x(φ ∧ ψ) → ∃x(φ ∧ ∃yψ)) |
10 | 3, 9 | syl6bir 220 | . 2 ⊢ (∀x x = y → (∃x∃y(φ ∧ ψ) → ∃x(φ ∧ ∃yψ))) |
11 | nfnae 1956 | . . 3 ⊢ Ⅎx ¬ ∀x x = y | |
12 | 19.40 1609 | . . . 4 ⊢ (∃y(φ ∧ ψ) → (∃yφ ∧ ∃yψ)) | |
13 | exdistrf.1 | . . . . . 6 ⊢ (¬ ∀x x = y → Ⅎyφ) | |
14 | 13 | 19.9d 1782 | . . . . 5 ⊢ (¬ ∀x x = y → (∃yφ → φ)) |
15 | 14 | anim1d 547 | . . . 4 ⊢ (¬ ∀x x = y → ((∃yφ ∧ ∃yψ) → (φ ∧ ∃yψ))) |
16 | 12, 15 | syl5 28 | . . 3 ⊢ (¬ ∀x x = y → (∃y(φ ∧ ψ) → (φ ∧ ∃yψ))) |
17 | 11, 16 | eximd 1770 | . 2 ⊢ (¬ ∀x x = y → (∃x∃y(φ ∧ ψ) → ∃x(φ ∧ ∃yψ))) |
18 | 10, 17 | pm2.61i 156 | 1 ⊢ (∃x∃y(φ ∧ ψ) → ∃x(φ ∧ ∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: oprabid 5551 |
Copyright terms: Public domain | W3C validator |