NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  felapton Unicode version

Theorem felapton 2317
Description: "Felapton", one of the syllogisms of Aristotelian logic. No is , all is , and some exist, therefore some is not . (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
felapton.maj
felapton.min
felapton.e
Assertion
Ref Expression
felapton

Proof of Theorem felapton
StepHypRef Expression
1 felapton.e . 2
2 felapton.min . . . . 5
32spi 1753 . . . 4
4 felapton.maj . . . . 5
54spi 1753 . . . 4
63, 5jca 518 . . 3
76eximi 1576 . 2
81, 7ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator