New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > felapton | GIF version |
Description: "Felapton", one of the syllogisms of Aristotelian logic. No φ is ψ, all φ is χ, and some φ exist, therefore some χ is not ψ. (In Aristotelian notation, EAO-3: MeP and MaS therefore SoP.) For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
felapton.maj | ⊢ ∀x(φ → ¬ ψ) |
felapton.min | ⊢ ∀x(φ → χ) |
felapton.e | ⊢ ∃xφ |
Ref | Expression |
---|---|
felapton | ⊢ ∃x(χ ∧ ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | felapton.e | . 2 ⊢ ∃xφ | |
2 | felapton.min | . . . . 5 ⊢ ∀x(φ → χ) | |
3 | 2 | spi 1753 | . . . 4 ⊢ (φ → χ) |
4 | felapton.maj | . . . . 5 ⊢ ∀x(φ → ¬ ψ) | |
5 | 4 | spi 1753 | . . . 4 ⊢ (φ → ¬ ψ) |
6 | 3, 5 | jca 518 | . . 3 ⊢ (φ → (χ ∧ ¬ ψ)) |
7 | 6 | eximi 1576 | . 2 ⊢ (∃xφ → ∃x(χ ∧ ¬ ψ)) |
8 | 1, 7 | ax-mp 5 | 1 ⊢ ∃x(χ ∧ ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |