| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > funfn | Unicode version | ||
| Description: An equivalence for the function predicate. (Contributed by set.mm contributors, 13-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| funfn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2353 | 
. . 3
 | |
| 2 | 1 | biantru 491 | 
. 2
 | 
| 3 | df-fn 4791 | 
. 2
 | |
| 4 | 2, 3 | bitr4i 243 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-cleq 2346 df-fn 4791 | 
| This theorem is referenced by: funssxp 5234 f1funfun 5264 funforn 5277 funbrfvb 5361 fvco 5384 eqfunfv 5398 fvimacnvi 5403 unpreima 5409 inpreima 5410 respreima 5411 ffvresb 5432 fnfullfun 5859 fvfullfun 5865 sbthlem1 6204 sbthlem3 6206 | 
| Copyright terms: Public domain | W3C validator |