| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > funfn | GIF version | ||
| Description: An equivalence for the function predicate. (Contributed by set.mm contributors, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| funfn | ⊢ (Fun A ↔ A Fn dom A) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2353 | . . 3 ⊢ dom A = dom A | |
| 2 | 1 | biantru 491 | . 2 ⊢ (Fun A ↔ (Fun A ∧ dom A = dom A)) |
| 3 | df-fn 4791 | . 2 ⊢ (A Fn dom A ↔ (Fun A ∧ dom A = dom A)) | |
| 4 | 2, 3 | bitr4i 243 | 1 ⊢ (Fun A ↔ A Fn dom A) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-cleq 2346 df-fn 4791 |
| This theorem is referenced by: funssxp 5234 f1funfun 5264 funforn 5277 funbrfvb 5361 fvco 5384 eqfunfv 5398 fvimacnvi 5403 unpreima 5409 inpreima 5410 respreima 5411 ffvresb 5432 fnfullfun 5859 fvfullfun 5865 sbthlem1 6204 sbthlem3 6206 |
| Copyright terms: Public domain | W3C validator |