NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funfn GIF version

Theorem funfn 5137
Description: An equivalence for the function predicate. (Contributed by set.mm contributors, 13-Aug-2004.)
Assertion
Ref Expression
funfn (Fun AA Fn dom A)

Proof of Theorem funfn
StepHypRef Expression
1 eqid 2353 . . 3 dom A = dom A
21biantru 491 . 2 (Fun A ↔ (Fun A dom A = dom A))
3 df-fn 4791 . 2 (A Fn dom A ↔ (Fun A dom A = dom A))
42, 3bitr4i 243 1 (Fun AA Fn dom A)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   = wceq 1642  dom cdm 4773  Fun wfun 4776   Fn wfn 4777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-cleq 2346  df-fn 4791
This theorem is referenced by:  funssxp  5234  f1funfun  5264  funforn  5277  funbrfvb  5361  fvco  5384  eqfunfv  5398  fvimacnvi  5403  unpreima  5409  inpreima  5410  respreima  5411  ffvresb  5432  fnfullfun  5859  fvfullfun  5865  sbthlem1  6204  sbthlem3  6206
  Copyright terms: Public domain W3C validator