New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ifbi | Unicode version |
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
Ref | Expression |
---|---|
ifbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi3 863 | . 2 | |
2 | iftrue 3669 | . . . 4 | |
3 | iftrue 3669 | . . . . 5 | |
4 | 3 | eqcomd 2358 | . . . 4 |
5 | 2, 4 | sylan9eq 2405 | . . 3 |
6 | iffalse 3670 | . . . 4 | |
7 | iffalse 3670 | . . . . 5 | |
8 | 7 | eqcomd 2358 | . . . 4 |
9 | 6, 8 | sylan9eq 2405 | . . 3 |
10 | 5, 9 | jaoi 368 | . 2 |
11 | 1, 10 | sylbi 187 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 wceq 1642 cif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: ifbid 3681 ifbieq2i 3682 |
Copyright terms: Public domain | W3C validator |