New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan9eq | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 | |
sylan9eq.2 |
Ref | Expression |
---|---|
sylan9eq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 | . 2 | |
2 | sylan9eq.2 | . 2 | |
3 | eqtr 2370 | . 2 | |
4 | 1, 2, 3 | syl2an 463 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: sylan9req 2406 sylan9eqr 2407 nineq12 3237 symdifeq12 3251 difeq12 3381 uneq12 3414 ineq12 3453 ifeq12 3676 ifbi 3680 preq12 3802 opkeq12 4062 preq12b 4128 xpkeq12 4201 addceq12 4386 opeq12 4581 xpeq12 4804 nfimad 4955 funimass1 5170 f1orescnv 5302 resdif 5307 oveq12 5533 caovmo 5646 cbvmpt2v 5681 fvmpt2 5705 ovmpt2g 5716 fvmptnf 5724 map0 6026 enmap2lem5 6068 enmap1lem3 6072 enmap1lem5 6074 |
Copyright terms: Public domain | W3C validator |