NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifclda Unicode version

Theorem ifclda 3690
Description: Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifclda.1
ifclda.2
Assertion
Ref Expression
ifclda

Proof of Theorem ifclda
StepHypRef Expression
1 iftrue 3669 . . . 4
21adantl 452 . . 3
3 ifclda.1 . . 3
42, 3eqeltrd 2427 . 2
5 iffalse 3670 . . . 4
65adantl 452 . . 3
7 ifclda.2 . . 3
86, 7eqeltrd 2427 . 2
94, 8pm2.61dan 766 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wa 358   wceq 1642   wcel 1710  cif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator