NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifclda GIF version

Theorem ifclda 3690
Description: Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifclda.1 ((φ ψ) → A C)
ifclda.2 ((φ ¬ ψ) → B C)
Assertion
Ref Expression
ifclda (φ → if(ψ, A, B) C)

Proof of Theorem ifclda
StepHypRef Expression
1 iftrue 3669 . . . 4 (ψ → if(ψ, A, B) = A)
21adantl 452 . . 3 ((φ ψ) → if(ψ, A, B) = A)
3 ifclda.1 . . 3 ((φ ψ) → A C)
42, 3eqeltrd 2427 . 2 ((φ ψ) → if(ψ, A, B) C)
5 iffalse 3670 . . . 4 ψ → if(ψ, A, B) = B)
65adantl 452 . . 3 ((φ ¬ ψ) → if(ψ, A, B) = B)
7 ifclda.2 . . 3 ((φ ¬ ψ) → B C)
86, 7eqeltrd 2427 . 2 ((φ ¬ ψ) → if(ψ, A, B) C)
94, 8pm2.61dan 766 1 (φ → if(ψ, A, B) C)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   = wceq 1642   wcel 1710   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator