New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifexg Unicode version

Theorem ifexg 3721
 Description: Conditional operator existence. (Contributed by NM, 21-Mar-2011.)
Assertion
Ref Expression
ifexg

Proof of Theorem ifexg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ifeq1 3666 . . 3
21eleq1d 2419 . 2
3 ifeq2 3667 . . 3
43eleq1d 2419 . 2
5 vex 2862 . . 3
6 vex 2862 . . 3
75, 6ifex 3720 . 2
82, 4, 7vtocl2g 2918 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 358   wceq 1642   wcel 1710  cvv 2859  cif 3662 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rab 2623  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-if 3663 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator