NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ifexg GIF version

Theorem ifexg 3722
Description: Conditional operator existence. (Contributed by NM, 21-Mar-2011.)
Assertion
Ref Expression
ifexg ((A V B W) → if(φ, A, B) V)

Proof of Theorem ifexg
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ifeq1 3667 . . 3 (x = A → if(φ, x, y) = if(φ, A, y))
21eleq1d 2419 . 2 (x = A → ( if(φ, x, y) V ↔ if(φ, A, y) V))
3 ifeq2 3668 . . 3 (y = B → if(φ, A, y) = if(φ, A, B))
43eleq1d 2419 . 2 (y = B → ( if(φ, A, y) V ↔ if(φ, A, B) V))
5 vex 2863 . . 3 x V
6 vex 2863 . . 3 y V
75, 6ifex 3721 . 2 if(φ, x, y) V
82, 4, 7vtocl2g 2919 1 ((A V B W) → if(φ, A, B) V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  Vcvv 2860   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-if 3664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator