New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iinun | Unicode version |
Description: Complement of intersection is equal to union of complements. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
iinun | ∼ ∼ ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun4 3547 | . 2 ∼ ∼ ∼ ∼ ∼ ∼ ∼ | |
2 | dblcompl 3228 | . . . 4 ∼ ∼ | |
3 | dblcompl 3228 | . . . 4 ∼ ∼ | |
4 | 2, 3 | ineq12i 3456 | . . 3 ∼ ∼ ∼ ∼ |
5 | 4 | compleqi 3245 | . 2 ∼ ∼ ∼ ∼ ∼ ∼ |
6 | 1, 5 | eqtr2i 2374 | 1 ∼ ∼ ∼ |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 ∼ ccompl 3206 cun 3208 cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 |
This theorem is referenced by: sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |