New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinun Unicode version

Theorem iinun 3548
 Description: Complement of intersection is equal to union of complements. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
iinun

Proof of Theorem iinun
StepHypRef Expression
1 dfun4 3546 . 2 ∼ ∼ ∼ ∼
2 dblcompl 3227 . . . 4 ∼ ∼
3 dblcompl 3227 . . . 4 ∼ ∼
42, 3ineq12i 3455 . . 3 ∼ ∼ ∼ ∼
54compleqi 3244 . 2 ∼ ∼ ∼ ∼
61, 5eqtr2i 2374 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1642   ∼ ccompl 3205   cun 3207   cin 3208 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214 This theorem is referenced by:  sbthlem1  6203
 Copyright terms: Public domain W3C validator