NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinun GIF version

Theorem iinun 3548
Description: Complement of intersection is equal to union of complements. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
iinun ∼ (AB) = ( ∼ A ∪ ∼ B)

Proof of Theorem iinun
StepHypRef Expression
1 dfun4 3546 . 2 ( ∼ A ∪ ∼ B) = ∼ ( ∼ ∼ A ∩ ∼ ∼ B)
2 dblcompl 3227 . . . 4 ∼ ∼ A = A
3 dblcompl 3227 . . . 4 ∼ ∼ B = B
42, 3ineq12i 3455 . . 3 ( ∼ ∼ A ∩ ∼ ∼ B) = (AB)
54compleqi 3244 . 2 ∼ ( ∼ ∼ A ∩ ∼ ∼ B) = ∼ (AB)
61, 5eqtr2i 2374 1 ∼ (AB) = ( ∼ A ∪ ∼ B)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  ccompl 3205  cun 3207  cin 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214
This theorem is referenced by:  sbthlem1  6203
  Copyright terms: Public domain W3C validator