NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfbidf Unicode version

Theorem nfbidf 1774
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
nfbidf.1  F/
nfbidf.2
Assertion
Ref Expression
nfbidf  F/  F/

Proof of Theorem nfbidf
StepHypRef Expression
1 nfbidf.1 . . 3  F/
2 nfbidf.2 . . . 4
31, 2albid 1772 . . . 4
42, 3imbi12d 311 . . 3
51, 4albid 1772 . 2
6 df-nf 1545 . 2  F/
7 df-nf 1545 . 2  F/
85, 6, 73bitr4g 279 1  F/  F/
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   F/wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfsb4t  2080  dvelimdf  2082  nfcjust  2478  nfceqdf  2489
  Copyright terms: Public domain W3C validator