| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfbidf | GIF version | ||
| Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbidf.1 | ⊢ Ⅎxφ |
| nfbidf.2 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| nfbidf | ⊢ (φ → (Ⅎxψ ↔ Ⅎxχ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbidf.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | nfbidf.2 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 1, 2 | albid 1772 | . . . 4 ⊢ (φ → (∀xψ ↔ ∀xχ)) |
| 4 | 2, 3 | imbi12d 311 | . . 3 ⊢ (φ → ((ψ → ∀xψ) ↔ (χ → ∀xχ))) |
| 5 | 1, 4 | albid 1772 | . 2 ⊢ (φ → (∀x(ψ → ∀xψ) ↔ ∀x(χ → ∀xχ))) |
| 6 | df-nf 1545 | . 2 ⊢ (Ⅎxψ ↔ ∀x(ψ → ∀xψ)) | |
| 7 | df-nf 1545 | . 2 ⊢ (Ⅎxχ ↔ ∀x(χ → ∀xχ)) | |
| 8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (φ → (Ⅎxψ ↔ Ⅎxχ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: nfsb4t 2080 dvelimdf 2082 nfcjust 2478 nfceqdf 2489 |
| Copyright terms: Public domain | W3C validator |