NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfbidf GIF version

Theorem nfbidf 1774
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
nfbidf.1 xφ
nfbidf.2 (φ → (ψχ))
Assertion
Ref Expression
nfbidf (φ → (Ⅎxψ ↔ Ⅎxχ))

Proof of Theorem nfbidf
StepHypRef Expression
1 nfbidf.1 . . 3 xφ
2 nfbidf.2 . . . 4 (φ → (ψχ))
31, 2albid 1772 . . . 4 (φ → (xψxχ))
42, 3imbi12d 311 . . 3 (φ → ((ψxψ) ↔ (χxχ)))
51, 4albid 1772 . 2 (φ → (x(ψxψ) ↔ x(χxχ)))
6 df-nf 1545 . 2 (Ⅎxψx(ψxψ))
7 df-nf 1545 . 2 (Ⅎxχx(χxχ))
85, 6, 73bitr4g 279 1 (φ → (Ⅎxψ ↔ Ⅎxχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  nfsb4t  2080  dvelimdf  2082  nfcjust  2478  nfceqdf  2489
  Copyright terms: Public domain W3C validator