NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfceqdf Unicode version

Theorem nfceqdf 2489
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1  F/
nfceqdf.2
Assertion
Ref Expression
nfceqdf  F/_ 
F/_

Proof of Theorem nfceqdf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4  F/
2 nfceqdf.2 . . . . 5
32eleq2d 2420 . . . 4
41, 3nfbidf 1774 . . 3  F/  F/
54albidv 1625 . 2  F/  F/
6 df-nfc 2479 . 2  F/_  F/
7 df-nfc 2479 . 2  F/_  F/
85, 6, 73bitr4g 279 1  F/_ 
F/_
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   F/wnf 1544   wceq 1642   wcel 1710   F/_wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-cleq 2346  df-clel 2349  df-nfc 2479
This theorem is referenced by:  dfnfc2  3910  nfopd  4606  nfimad  4955  nffvd  5336
  Copyright terms: Public domain W3C validator