NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfsb4t Unicode version

Theorem nfsb4t 2080
Description: A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2081). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.)
Assertion
Ref Expression
nfsb4t  F/  F/

Proof of Theorem nfsb4t
StepHypRef Expression
1 sbequ12 1919 . . . . . . . . 9
21sps 1754 . . . . . . . 8
32drnf2 1970 . . . . . . 7  F/  F/
43biimpcd 215 . . . . . 6  F/  F/
54sps 1754 . . . . 5  F/  F/
65a1dd 42 . . . 4  F/  F/
7 nfa1 1788 . . . . . . . 8  F/ F/
8 nfnae 1956 . . . . . . . . 9  F/
9 nfnae 1956 . . . . . . . . 9  F/
108, 9nfan 1824 . . . . . . . 8  F/
117, 10nfan 1824 . . . . . . 7  F/ F/
12 nfeqf 1958 . . . . . . . . 9  F/
1312adantl 452 . . . . . . . 8  F/ 
F/
14 sp 1747 . . . . . . . . 9  F/  F/
1514adantr 451 . . . . . . . 8  F/ 
F/
1613, 15nfimd 1808 . . . . . . 7  F/ 
F/
1711, 16nfald 1852 . . . . . 6  F/ 
F/
1817ex 423 . . . . 5  F/  F/
19 nfnae 1956 . . . . . . 7  F/
20 sb4b 2054 . . . . . . 7
2119, 20nfbidf 1774 . . . . . 6  F/  F/
2221imbi2d 307 . . . . 5  F/  F/
2318, 22syl5ibrcom 213 . . . 4  F/  F/
246, 23pm2.61d 150 . . 3  F/  F/
2524exp3a 425 . 2  F/  F/
26 nfsb2 2058 . . 3  F/
27 drsb1 2022 . . . 4
2827drnf2 1970 . . 3  F/  F/
2926, 28syl5ib 210 . 2  F/
3025, 29pm2.61d2 152 1  F/  F/
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540   F/wnf 1544  wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  nfsb4  2081  dvelimdf  2082  nfsbd  2111
  Copyright terms: Public domain W3C validator