| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nfsb4t | Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2081). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfsb4t | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequ12 1919 | 
. . . . . . . . 9
 | |
| 2 | 1 | sps 1754 | 
. . . . . . . 8
 | 
| 3 | 2 | drnf2 1970 | 
. . . . . . 7
 | 
| 4 | 3 | biimpcd 215 | 
. . . . . 6
 | 
| 5 | 4 | sps 1754 | 
. . . . 5
 | 
| 6 | 5 | a1dd 42 | 
. . . 4
 | 
| 7 | nfa1 1788 | 
. . . . . . . 8
 | |
| 8 | nfnae 1956 | 
. . . . . . . . 9
 | |
| 9 | nfnae 1956 | 
. . . . . . . . 9
 | |
| 10 | 8, 9 | nfan 1824 | 
. . . . . . . 8
 | 
| 11 | 7, 10 | nfan 1824 | 
. . . . . . 7
 | 
| 12 | nfeqf 1958 | 
. . . . . . . . 9
 | |
| 13 | 12 | adantl 452 | 
. . . . . . . 8
 | 
| 14 | sp 1747 | 
. . . . . . . . 9
 | |
| 15 | 14 | adantr 451 | 
. . . . . . . 8
 | 
| 16 | 13, 15 | nfimd 1808 | 
. . . . . . 7
 | 
| 17 | 11, 16 | nfald 1852 | 
. . . . . 6
 | 
| 18 | 17 | ex 423 | 
. . . . 5
 | 
| 19 | nfnae 1956 | 
. . . . . . 7
 | |
| 20 | sb4b 2054 | 
. . . . . . 7
 | |
| 21 | 19, 20 | nfbidf 1774 | 
. . . . . 6
 | 
| 22 | 21 | imbi2d 307 | 
. . . . 5
 | 
| 23 | 18, 22 | syl5ibrcom 213 | 
. . . 4
 | 
| 24 | 6, 23 | pm2.61d 150 | 
. . 3
 | 
| 25 | 24 | exp3a 425 | 
. 2
 | 
| 26 | nfsb2 2058 | 
. . 3
 | |
| 27 | drsb1 2022 | 
. . . 4
 | |
| 28 | 27 | drnf2 1970 | 
. . 3
 | 
| 29 | 26, 28 | syl5ib 210 | 
. 2
 | 
| 30 | 25, 29 | pm2.61d2 152 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 | 
| This theorem is referenced by: nfsb4 2081 dvelimdf 2082 nfsbd 2111 | 
| Copyright terms: Public domain | W3C validator |