New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfsb4t | Unicode version |
Description: A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2081). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
nfsb4t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 1919 | . . . . . . . . 9 | |
2 | 1 | sps 1754 | . . . . . . . 8 |
3 | 2 | drnf2 1970 | . . . . . . 7 |
4 | 3 | biimpcd 215 | . . . . . 6 |
5 | 4 | sps 1754 | . . . . 5 |
6 | 5 | a1dd 42 | . . . 4 |
7 | nfa1 1788 | . . . . . . . 8 | |
8 | nfnae 1956 | . . . . . . . . 9 | |
9 | nfnae 1956 | . . . . . . . . 9 | |
10 | 8, 9 | nfan 1824 | . . . . . . . 8 |
11 | 7, 10 | nfan 1824 | . . . . . . 7 |
12 | nfeqf 1958 | . . . . . . . . 9 | |
13 | 12 | adantl 452 | . . . . . . . 8 |
14 | sp 1747 | . . . . . . . . 9 | |
15 | 14 | adantr 451 | . . . . . . . 8 |
16 | 13, 15 | nfimd 1808 | . . . . . . 7 |
17 | 11, 16 | nfald 1852 | . . . . . 6 |
18 | 17 | ex 423 | . . . . 5 |
19 | nfnae 1956 | . . . . . . 7 | |
20 | sb4b 2054 | . . . . . . 7 | |
21 | 19, 20 | nfbidf 1774 | . . . . . 6 |
22 | 21 | imbi2d 307 | . . . . 5 |
23 | 18, 22 | syl5ibrcom 213 | . . . 4 |
24 | 6, 23 | pm2.61d 150 | . . 3 |
25 | 24 | exp3a 425 | . 2 |
26 | nfsb2 2058 | . . 3 | |
27 | drsb1 2022 | . . . 4 | |
28 | 27 | drnf2 1970 | . . 3 |
29 | 26, 28 | syl5ib 210 | . 2 |
30 | 25, 29 | pm2.61d2 152 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 wnf 1544 wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: nfsb4 2081 dvelimdf 2082 nfsbd 2111 |
Copyright terms: Public domain | W3C validator |