| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfrex | Unicode version | ||
| Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrex.1 |
|
| nfrex.2 |
|
| Ref | Expression |
|---|---|
| nfrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 2628 |
. 2
| |
| 2 | nfrex.1 |
. . . 4
| |
| 3 | nfrex.2 |
. . . . 5
| |
| 4 | 3 | nfn 1793 |
. . . 4
|
| 5 | 2, 4 | nfral 2668 |
. . 3
|
| 6 | 5 | nfn 1793 |
. 2
|
| 7 | 1, 6 | nfxfr 1570 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: r19.12 2728 sbcrexg 3122 nfuni 3898 nfiun 3996 nfop 4605 nfima 4954 |
| Copyright terms: Public domain | W3C validator |