NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfrex Unicode version

Theorem nfrex 2670
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfrex.1  F/_
nfrex.2  F/
Assertion
Ref Expression
nfrex  F/

Proof of Theorem nfrex
StepHypRef Expression
1 dfrex2 2628 . 2
2 nfrex.1 . . . 4  F/_
3 nfrex.2 . . . . 5  F/
43nfn 1793 . . . 4  F/
52, 4nfral 2668 . . 3  F/
65nfn 1793 . 2  F/
71, 6nfxfr 1570 1  F/
Colors of variables: wff setvar class
Syntax hints:   wn 3   F/wnf 1544   F/_wnfc 2477  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621
This theorem is referenced by:  r19.12  2728  sbcrexg  3122  nfuni  3898  nfiun  3996  nfop  4605  nfima  4954
  Copyright terms: Public domain W3C validator