New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfrex | GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfrex.1 | ⊢ ℲxA |
nfrex.2 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfrex | ⊢ Ⅎx∃y ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 2628 | . 2 ⊢ (∃y ∈ A φ ↔ ¬ ∀y ∈ A ¬ φ) | |
2 | nfrex.1 | . . . 4 ⊢ ℲxA | |
3 | nfrex.2 | . . . . 5 ⊢ Ⅎxφ | |
4 | 3 | nfn 1793 | . . . 4 ⊢ Ⅎx ¬ φ |
5 | 2, 4 | nfral 2668 | . . 3 ⊢ Ⅎx∀y ∈ A ¬ φ |
6 | 5 | nfn 1793 | . 2 ⊢ Ⅎx ¬ ∀y ∈ A ¬ φ |
7 | 1, 6 | nfxfr 1570 | 1 ⊢ Ⅎx∃y ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 Ⅎwnf 1544 Ⅎwnfc 2477 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 |
This theorem is referenced by: r19.12 2728 sbcrexg 3122 nfuni 3898 nfiun 3996 nfop 4605 nfima 4954 |
Copyright terms: Public domain | W3C validator |