NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcrexg Unicode version

Theorem sbcrexg 3122
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcrexg  [.  ].  [.  ].
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()   (,)

Proof of Theorem sbcrexg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3050 . 2  [.  ].
2 dfsbcq2 3050 . . 3  [.  ].
32rexbidv 2636 . 2  [.  ].
4 nfcv 2490 . . . 4  F/_
5 nfs1v 2106 . . . 4  F/
64, 5nfrex 2670 . . 3  F/
7 sbequ12 1919 . . . 4
87rexbidv 2636 . . 3
96, 8sbie 2038 . 2
101, 3, 9vtoclbg 2916 1  [.  ].  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642  wsb 1648   wcel 1710  wrex 2616   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator