| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > opabbid | Unicode version | ||
| Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| opabbid.1 |
|
| opabbid.2 |
|
| opabbid.3 |
|
| Ref | Expression |
|---|---|
| opabbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbid.1 |
. . . 4
| |
| 2 | opabbid.2 |
. . . . 5
| |
| 3 | opabbid.3 |
. . . . . 6
| |
| 4 | 3 | anbi2d 684 |
. . . . 5
|
| 5 | 2, 4 | exbid 1773 |
. . . 4
|
| 6 | 1, 5 | exbid 1773 |
. . 3
|
| 7 | 6 | abbidv 2468 |
. 2
|
| 8 | df-opab 4624 |
. 2
| |
| 9 | df-opab 4624 |
. 2
| |
| 10 | 7, 8, 9 | 3eqtr4g 2410 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-opab 4624 |
| This theorem is referenced by: opabbidv 4626 fnoprabg 5586 mpteq12f 5656 |
| Copyright terms: Public domain | W3C validator |