NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opabbid Unicode version

Theorem opabbid 4625
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Hypotheses
Ref Expression
opabbid.1  F/
opabbid.2  F/
opabbid.3
Assertion
Ref Expression
opabbid

Proof of Theorem opabbid
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opabbid.1 . . . 4  F/
2 opabbid.2 . . . . 5  F/
3 opabbid.3 . . . . . 6
43anbi2d 684 . . . . 5
52, 4exbid 1773 . . . 4
61, 5exbid 1773 . . 3
76abbidv 2468 . 2
8 df-opab 4624 . 2
9 df-opab 4624 . 2
107, 8, 93eqtr4g 2410 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wex 1541   F/wnf 1544   wceq 1642  cab 2339  cop 4562  copab 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-opab 4624
This theorem is referenced by:  opabbidv  4626  fnoprabg  5586  mpteq12f  5656
  Copyright terms: Public domain W3C validator