New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opabbid | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
opabbid.1 | ⊢ Ⅎxφ |
opabbid.2 | ⊢ Ⅎyφ |
opabbid.3 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
opabbid | ⊢ (φ → {〈x, y〉 ∣ ψ} = {〈x, y〉 ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbid.1 | . . . 4 ⊢ Ⅎxφ | |
2 | opabbid.2 | . . . . 5 ⊢ Ⅎyφ | |
3 | opabbid.3 | . . . . . 6 ⊢ (φ → (ψ ↔ χ)) | |
4 | 3 | anbi2d 684 | . . . . 5 ⊢ (φ → ((z = 〈x, y〉 ∧ ψ) ↔ (z = 〈x, y〉 ∧ χ))) |
5 | 2, 4 | exbid 1773 | . . . 4 ⊢ (φ → (∃y(z = 〈x, y〉 ∧ ψ) ↔ ∃y(z = 〈x, y〉 ∧ χ))) |
6 | 1, 5 | exbid 1773 | . . 3 ⊢ (φ → (∃x∃y(z = 〈x, y〉 ∧ ψ) ↔ ∃x∃y(z = 〈x, y〉 ∧ χ))) |
7 | 6 | abbidv 2468 | . 2 ⊢ (φ → {z ∣ ∃x∃y(z = 〈x, y〉 ∧ ψ)} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ χ)}) |
8 | df-opab 4624 | . 2 ⊢ {〈x, y〉 ∣ ψ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ ψ)} | |
9 | df-opab 4624 | . 2 ⊢ {〈x, y〉 ∣ χ} = {z ∣ ∃x∃y(z = 〈x, y〉 ∧ χ)} | |
10 | 7, 8, 9 | 3eqtr4g 2410 | 1 ⊢ (φ → {〈x, y〉 ∣ ψ} = {〈x, y〉 ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 {cab 2339 〈cop 4562 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-opab 4624 |
This theorem is referenced by: opabbidv 4626 fnoprabg 5586 mpteq12f 5656 |
Copyright terms: Public domain | W3C validator |